

# **Course Structure MSc Environmental Science**

|       | G                                      | OKUL G         | LOBAL UN                                                  | IVER             | SITY S              | IDHPU   | UR       |          |                |
|-------|----------------------------------------|----------------|-----------------------------------------------------------|------------------|---------------------|---------|----------|----------|----------------|
|       |                                        | F              | ACULTY O                                                  | F SCI            | ENCE                |         |          |          |                |
|       |                                        | M.SC           | SEM I (Envir                                              | onmen            | tal Scien           | ice)    |          |          |                |
|       |                                        |                |                                                           |                  |                     |         | Exami    | nation   |                |
| Sr.No | course<br>type                         | course<br>code | course<br>name                                            | Lecure<br>(Hrs.) | Practical<br>(Hrs.) | Credits | internal | External | Total<br>Marks |
| 1     | DISCIPLINE<br>SPECIFIC<br>COURSE (DSC) | MES101DSC      | Principles of<br>Environmental<br>Sciences                | 4                | 0                   | 4       | 30       | 70       | 100            |
| 2     | DISCIPLINE<br>SPECIFIC<br>COURSE (DSC) | MES102DSC      | Current<br>Environmental<br>issues                        | 4                | 0                   | 4       | 30       | 70       | 100            |
| 3     | DISCIPLINE<br>SPECIFIC<br>COURSE (DSC) | MES103DSC      | Biochemistry<br>and Analytical<br>techniques              | 4                | 0                   | 4       | 30       | 70       | 100            |
| 4     | DISCIPLINE<br>SPECIFIC<br>COURSE (DSC) | MES104DSC      | Ecology and<br>Biodiversity                               | 4                | 0                   | 4       | 30       | 70       | 100            |
| 5     | PRACTICAL<br>COURSE (PRA)              | MES101PRA      | Biochemistry<br>and Analytical<br>techniques              | 0                | 6                   | 3       | 0        | 75       | 75             |
| 6     | PRACTICAL<br>COURSE (PRA)              | MES102PRA      | Ecology and<br>Biodiversity                               | 0                | 6                   | 3       | 0        | 75       | 75             |
| 7     | Elective course                        | MES105SE       | Conservation<br>and Biology and<br>Wildlife<br>Management | 2                | 0                   | 2       | 15       | 35       | 50             |
|       | MES106SE                               |                | Environmentally<br>Sustainable<br>Technologies            |                  |                     |         |          |          |                |
|       |                                        | Total          |                                                           | 18               | 12                  | 24      | 135      | 465      | 600            |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



# **GOKUL GLOBAL UNIVERSITY SIDHPUR**

# FACULTY OF SCIENCE

|       | M.SC SEM II (Environmental Science) |                |                                                          |                  |                     |         |          |          |                |  |  |  |  |
|-------|-------------------------------------|----------------|----------------------------------------------------------|------------------|---------------------|---------|----------|----------|----------------|--|--|--|--|
|       |                                     |                |                                                          |                  |                     |         | Exami    | nation   |                |  |  |  |  |
| Sr.No | course type                         | course<br>code | course name                                              | Lecure<br>(Hrs.) | Practical<br>(Hrs.) | Credits | internal | External | Total<br>Marks |  |  |  |  |
| 1     | DISCIPLINE SPECIFIC<br>COURSE (DSC) | MES201DSC      | Environmental<br>Chemistry                               | 4                | 0                   | 4       | 30       | 70       | 100            |  |  |  |  |
| 2     | DISCIPLINE SPECIFIC<br>COURSE (DSC) | MES202DSC      | Environmental<br>Modeling ,<br>Remote sensing<br>and GIS | 4                | 0                   | 4       | 30       | 70       | 100            |  |  |  |  |
| 3     | DISCIPLINE SPECIFIC<br>COURSE (DSC) | MES203DSC      | Solid Waste<br>Management                                | 4                | 0                   | 4       | 30       | 70       | 100            |  |  |  |  |
| 4     | DISCIPLINE SPECIFIC<br>COURSE (DSC) | MES204DSC      | Disaster<br>Management                                   | 4                | 0                   | 4       | 30       | 70       | 100            |  |  |  |  |
| 5     | PRACTICAL COURSE<br>(PRA)           | MES201PRA      | Environmental<br>Monitoring<br>techniques                | 0                | 6                   | 3       | 0        | 75       | 75             |  |  |  |  |
| 6     | PRACTICAL COURSE<br>(PRA)           | MES202PRA      | Solid Waste<br>Management                                | 0                | 6                   | 3       | 0        | 75       | 75             |  |  |  |  |
|       |                                     | MES205SE       | Water Resource<br>Management                             |                  |                     |         |          |          |                |  |  |  |  |
| 7     | 7 Elective course MES2              |                | Industrial Wastes<br>and their<br>management             | 2                | 0                   | 2       | 15       | 35       | 50             |  |  |  |  |
|       |                                     | Total          |                                                          | 18               | 12                  | 24      | 135      | 465      | 600            |  |  |  |  |

#### ~~~~~ 10. `



**Faculty of Science Gokul Science College** 



University Campus, State Highway-41,



# **GOKUL GLOBAL UNIVERSITY SIDHPUR**

# FACULTY OF SCIENCE

# M.SC SEM III (Environmental Science)

|       |                                           |                      |                                                                                     |                  |                     | ,       | Exami    | Examination |                |  |
|-------|-------------------------------------------|----------------------|-------------------------------------------------------------------------------------|------------------|---------------------|---------|----------|-------------|----------------|--|
| Sr.No | course<br>type                            | course<br>code       | course<br>name                                                                      | Lecure<br>(Hrs.) | Practical<br>(Hrs.) | Credits | internal | External    | Total<br>Marks |  |
| 1     | DISCIPLINE<br>SPECIFIC<br>COURSE<br>(DSC) | MES301DSC            | Environmental<br>Health and<br>Disaster<br>Management                               | 4                | 0                   | 4       | 30       | 70          | 100            |  |
| 2     | DISCIPLINE<br>SPECIFIC<br>COURSE<br>(DSC) | MES302DSC            | Environmental<br>Monitoring and<br>Management<br>System                             | 4                | 0                   | 4       | 30       | 70          | 100            |  |
| 3     | DISCIPLINE<br>SPECIFIC<br>COURSE<br>(DSC) | MES303DSC            | Ecological<br>Assessment<br>Techniques RS,<br>& GIS                                 | 4                | 0                   | 4       | 30       | 70          | 100            |  |
| 4     | DISCIPLINE<br>SPECIFIC<br>COURSE<br>(DSC) | MES304DSC            | Environmental<br>LAW , Impact<br>Assessment &<br>Audit                              | 4                | 0                   | 4       | 30       | 70          | 100            |  |
| 5     | PRACTICAL<br>COURSE<br>(PRA)              | MES301PRA            | Practical - 1<br>(Enviromental<br>Monitoring &<br>Management)                       | 0                | 6                   | 3       | 0        | 75          | 75             |  |
| 6     | PRACTICAL<br>COURSE<br>(PRA)              | MES302PRA            | Practical-2<br>(RS,GIS<br>&Ecological<br>Assessment)                                | 0                | 6                   | 3       | 0        | 75          | 75             |  |
| 7     | Elective<br>course                        | MES305SE<br>MES306SE | Wlidelife and<br>Conservation<br>Biology - III<br>Fisherise and<br>Aquaculture -III | 2                | 0                   | 2       | 15       | 35          | 50             |  |
|       |                                           | Total                |                                                                                     | 18               | 12                  | 24      | 135      | 465         | 600            |  |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



# **GOKUL GLOBAL UNIVERSITY SIDHPUR**

# FACULTY OF SCIENCE

|       |                                        | M.SC           | SEM IV (Env                                                          | ironme           | ental Scie          | ence)   |          |          |                |
|-------|----------------------------------------|----------------|----------------------------------------------------------------------|------------------|---------------------|---------|----------|----------|----------------|
|       |                                        |                |                                                                      |                  |                     |         | Exami    |          |                |
| Sr.No | couse<br>type                          | course<br>code | course<br>name                                                       | Lecure<br>(Hrs.) | Practical<br>(Hrs.) | Credits | internal | External | Total<br>Marks |
| 1     | DISCIPLINE<br>SPECIFIC<br>COURSE (DSC) | MES401DSC      | MAJOR<br>DISSERTATION                                                | 60               | 60                  | 22      | 0        | 550      | 550            |
| 2     |                                        | MES401DSC      | Eco-turism and<br>Conservation<br>(ETC)                              |                  |                     |         |          |          |                |
| 3     | Elective Course                        | MES402DSC      | Environmental<br>Communcation<br>and Conflict<br>Resolution<br>(ECC) | 2                | 0                   | 2       | 15       | 35       | 50             |
|       |                                        | TOTAL          |                                                                      | 62               | 60                  | 24      | 15       | 585      | 600            |







|                 | GO           | KUL GLOBAL U                  | <b>INIVERSITY, SIDH</b> | PUR                            |  |  |  |
|-----------------|--------------|-------------------------------|-------------------------|--------------------------------|--|--|--|
| Progra          | amme Code    | MES                           | Programme Name          | M.Sc. Environmental<br>Science |  |  |  |
| C               | ourse Code   | MES101DSC                     | Semester                | Ι                              |  |  |  |
|                 |              | Principles of En              | vironmental Sciences    |                                |  |  |  |
| C               | ourse type : | Discipline Specific<br>Course | Iofal Credit ·          |                                |  |  |  |
| Teachin<br>(hou | 0            | Examination Marking scheme    |                         |                                |  |  |  |
| Theory          | Practical    | Internal                      | External                | Total                          |  |  |  |
| (hrs)           | (hrs)        | (Marks)                       | (Marks)                 | (Marks)                        |  |  |  |
| 60              |              | 30                            | 70 (Paper of 3 hrs)     | 100                            |  |  |  |

| Unit | Topic | Content                                                                                                                                                                                          | Hours | Weightage |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 1    | 1.1   | Multidisciplinary nature of environmental studies and<br>Science         Definition, scope and importance, Need for public awareness.         Institutions in Environment, People in Environment | 15    | 25%       |
|      |       | Introduction to Environment and its components Atmosphere                                                                                                                                        |       |           |
|      | 2.1   | Structure and composition of atmosphere, Earth's current atmosphere and challenges                                                                                                               |       |           |
| 2    | 2.2   | Hydrosphere: Hydrosphere: Structure, types, importance and<br>hydrological cycles; Current issues conservation and management<br>of water resources                                              | 15    | 25%       |
|      | 2.3   | Lithosphere: Structure and Composition of Earth crust; Soil<br>properties (Physical and chemicals), Soil components and their<br>importance; Soil erosion, degradation and soil conservation     |       |           |
|      |       | Ecosystems                                                                                                                                                                                       |       |           |
|      | 3.1   | Concept of an ecosystem; Structure and function of an ecosystem;                                                                                                                                 |       |           |
| 3    | 3.2   | Ecological succession; Introduction, types, characteristic features, structure and function of the following ecosystem:.                                                                         | 15    | 25%       |
|      | 3.3   | (a) Forest ecosystem (b) Grassland ecosystem (c) Desert<br>ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers,<br>oceans, estuaries)                                                |       |           |
| 4    |       | Material Cycles in Ecosystems                                                                                                                                                                    | 15    | 25%       |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



| 4.1 | Water Cycle or Hydrological Cycle                          |  |
|-----|------------------------------------------------------------|--|
| 4.2 | Carbon Cycle, Nitrogen Cycle, Oxygen Cycle, Sulphur Cycle, |  |
|     | Phosphorous Cycle                                          |  |

## **Suggested Readings:**

#### **Reference Books:**

- Kaushik, A and Kaushik, C. (2004). Perspectives in Environmental Studies. New Age International (P) Limited, Publishers
- Bharucha, E. (2004). Text Book for Environmental Studies. University Grant Commission.
- Saravanan, K. (2005). Principles of Environmental Science and Technology. New Age International (P) Limited, Publishers
- Singh, Y.K. (2006). Environmental Science. New Age International (P) Limited, Publishers







# Subject Code: MES101DSC Subject Name: Principles of Environmental Science

# Semester: I Faculty Name/s: Pranav Patel

### Course Outcomes: At the end of the course, students shall be able to

| CO1 | Identifies simple observable features (e.g., shape, color, texture, aroma) of leaves, trunk and bark of plants in immediate surroundings                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | To spread awareness of the reasons behind environmental degradation and suggest methods to reduce the activities that are harming the environment.                 |
| CO3 | It is a human endeavor to understand the world by building - up conceptual models on the basis of observations and thus arriving at theories, laws and principles. |
| CO4 | Understanding difficulties arising in using economic analysis in environmental policy design                                                                       |
| CO5 |                                                                                                                                                                    |

# **CO - PO Competency and Program Indicators (PI)**

| Course   |     |     |     |     | Pı  | ogran | 1 Outc | omes |     |      |      |      |
|----------|-----|-----|-----|-----|-----|-------|--------|------|-----|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6   | PO7    | PO8  | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2   | 2   | 2   | -   | -   | -     | -      | 2    | 1   | -    |      |      |
| CO2      | 3   | 1   | 2   | -   | -   | -     | -      | 1    | 1   | -    |      |      |
| CO3      | 2   | 2   | 1   | -   | -   | -     | -      | 1    | 2   | -    |      |      |
| CO4      | 2   | 1   | 1   | -   | -   | -     | -      | 2    | 1   | -    |      |      |
| CO5      |     |     |     |     |     |       |        |      |     |      |      |      |

## **CO-PO & CO-PSO Mapping**

| Course   |     |     |     |     |     | Ι   | Program | m Out | comes |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|---------|-------|-------|------|------|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8   | PO9   | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO2      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO3      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO4      |     |     |     |     |     |     |         |       |       |      |      |      | 1    | -    |
| CO5      |     |     |     |     |     |     |         |       |       |      |      |      |      |      |



Faculty of Science Gokul Science College



University Campus, State Highway-41,



|                 | GOI          | KUL GLOBAL U                  | JNIVERSITY, SIDH    | PUR                            |  |  |  |
|-----------------|--------------|-------------------------------|---------------------|--------------------------------|--|--|--|
| Progra          | amme Code    | MES                           | Programme Name      | M.Sc. environmental<br>Science |  |  |  |
| C               | ourse Code   | MES102DSC                     | Semester            | Ι                              |  |  |  |
|                 |              | Current Env                   | ironmental Issues   |                                |  |  |  |
| С               | ourse type : | Discipline Specific<br>Course | Total Credit :      | 04                             |  |  |  |
| Teachir<br>(hou | 0            | Examination Marking scheme    |                     |                                |  |  |  |
| Theory          | Practical    | Internal                      | External            | Total                          |  |  |  |
| (hrs)           | (hrs)        | (Marks)                       | (Marks)             | (Marks)                        |  |  |  |
| 60              |              | 30                            | 70 (Paper of 3 hrs) | 100                            |  |  |  |

| Unit | Topic | Content                                                        | Hours | Weightage |
|------|-------|----------------------------------------------------------------|-------|-----------|
|      |       | Air and Soil Issues                                            |       |           |
|      | 1.1   | Air Pollution, Green House Effect, Global Warming, Acid        | 1.0   | 250/      |
| 1    |       | rain, Climate Change, Ozone Layer Depletion, Soil erosion,     | 15    | 25%       |
|      |       | Degradation of land, desertification, Over use of Pesticides,  |       |           |
|      |       | Insecticides and Herbicides                                    |       |           |
|      |       | Water Issues:                                                  |       |           |
|      | 2.1   | Environmental issues related to water resource projects        |       |           |
|      | 2.2   | Narmada dam, Tehri dam, Almatti dam, Cauvery and               |       |           |
|      |       | Mahanadi, Hydro-power projects in Jammu & Kashmir,             |       |           |
| 2    | 2.3   | Himachal and North-Eastern States. Water conservation-         | 15    | 250/      |
| Z    |       | development of watersheds, Rain water harvesting and           | 15    | 25%       |
|      | 2.4   | ground water recharge. National river conservation plan –      |       |           |
|      |       | Namami Gange and Yamuna Action Plan. Eutrophication            |       |           |
|      |       | and Biomagnifications. Conservation of wetlands, Ramsar        |       |           |
|      |       | sites in India                                                 |       |           |
|      |       | Forest and Wildlife Issues                                     |       |           |
| 3    | 3.1   | Deforestation, Biodiversity loss, Depletion of Natural         | 15    | 25%       |
| 3    |       | Resources, Extinction of wildlife and loss of natural habitat, | 15    | 2370      |
|      |       | Poaching and hunting                                           |       |           |
| 4    |       | Human and Waste Management                                     | 15    | 25%       |



Faculty of Science Gokul Science College



University Campus, State Highway-41,



| 4.1 | Population,      | Ethics,   | Public      | awareness,     | Urbanization, |  |
|-----|------------------|-----------|-------------|----------------|---------------|--|
|     | Industrializatio | on, Solid | Waste Issu  | es: Solid Wast | e Management  |  |
|     | Issues, Impact   | on Humar  | n Health an | d Environment  |               |  |

#### **Suggested Readings:**

- 1. Kaushik, A and Kaushik, C. (2004). Perspectives in Environmental Studies. New Age International (P) Limited, Publishers
- 2. Bharucha, E. (2004). Text Book for Environmental Studies. University Grant Commission.
- 3. Saravanan, K. (2005). Principles of Environmental Science and Technology. New Age International (P) Limited, Publishers
- 4. Singh, Y.K. (2006). Environmental Science. New Age International (P) Limited, Publishers







# Subject Code: MES102DSC Subject Name: Current Environmental Issues

## Semester: I Faculty Name/s: Pranav Patel

## Course Outcomes: At the end of the course, students shall be able to

| CO1 | An Environmental Studies major will be able to recognize the physical, chemical, and biological components of the earth's systems and show how they function.     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Helps students understand how their decisions and actions change the environment, strengthens knowledge and skills needed to address complex environmental issues |
| CO3 | EIA helps to identify potential environmental impacts of a project, such as air and water pollution, soil erosion, deforestation, and biodiversity loss.          |
| CO4 | To spread awareness of the reasons behind environmental degradation and suggest methods to reduce the activities that are harming the environment                 |
| CO5 |                                                                                                                                                                   |

# **CO - PO Competency and Program Indicators (PI)**

| Course   | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |
|----------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2                | 2   | 2   | -   | -   | -   | -   | 2   | 1   | -    |      |      |
| CO2      | 2                | 1   | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO3      | 1                | 2   | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO4      | 2                | 1   | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |                  |     |     |     |     |     |     |     |     |      |      |      |

# **CO-PO & CO-PSO Mapping**

| Course   | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |                  |     |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO2      |                  |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |                  |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO4      |                  |     |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO5      |                  |     |     |     |     |     |     |     |     |      |      |      |      |      |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



|                 | GO           | KUL GLOBAL U                  | UNIVERSITY, SIDH                       | PUR                             |  |  |  |  |  |
|-----------------|--------------|-------------------------------|----------------------------------------|---------------------------------|--|--|--|--|--|
| Progra          | amme Code    | MES                           | Programme Name                         | M. Sc. Environmental<br>Science |  |  |  |  |  |
| C               | ourse Code   | MES103DSC                     | Semester                               | Ι                               |  |  |  |  |  |
|                 |              | <b>Biochemistry and</b>       | Biochemistry and Analytical techniques |                                 |  |  |  |  |  |
| C               | ourse type : | Discipline Specific<br>Course | Total Credit :                         | 04                              |  |  |  |  |  |
| Teachin<br>(hou | 0            | Examination Marking scheme    |                                        |                                 |  |  |  |  |  |
| Theory          | Practical    | Internal                      | External                               | Total                           |  |  |  |  |  |
| (hrs)           | (hrs)        | (Marks)                       | (Marks)                                | (Marks)                         |  |  |  |  |  |
| 60              |              | 30                            | 70 (Paper of 3 hrs)                    | 100                             |  |  |  |  |  |

| Unit | Topic | Content                                                                                                                    | Hours | Weightage |
|------|-------|----------------------------------------------------------------------------------------------------------------------------|-------|-----------|
|      |       | Biochemistry I                                                                                                             |       |           |
|      | 1.1   | Basic chemistry for biologist                                                                                              |       |           |
|      | 1.2   | Protein Structure and Function : Amino Acids, Structure of                                                                 |       |           |
|      |       | Proteins, Globular Proteins, Fibrous Proteins, Enzymes                                                                     |       |           |
| 1    | 1.3   | Introduction to Carbohydrates, Glycolysis, Tricarboxylic Acid                                                              | 15    | 25%       |
|      |       | Cycle, Gluconeogenesis, Glycogen Metabolism, Metabolism of<br>Monosaccharides and Disaccharides, Pentose Phosphate Pathway |       |           |
|      |       | and NADPH, Glycosaminoglycans and Glycoproteins                                                                            |       |           |
|      | 1.4   | Characteristics and types of lipid, Metabolism of Dietary Lipids,                                                          |       |           |
|      |       | Fatty Acid and Triacylglycerol                                                                                             |       |           |
|      |       | Biochemistry II                                                                                                            |       |           |
|      | 2.1   | Amino Acids: Characteristics and types of Amino acids,                                                                     |       |           |
|      |       | Conversion of Amino Acids to Specialized Products, Nucleotide                                                              |       |           |
|      |       | Metabolism                                                                                                                 |       |           |
|      | 2.2   | Integration of Metabolism: Metabolic Effects of Insulin and                                                                |       |           |
| 2    |       | Glucagon, The Feed/Fast Cycle, Diabetes Mellitus, Obesity,                                                                 | 15    | 25%       |
|      |       | Nutrition, Vitamins                                                                                                        |       |           |
|      | 2.3   | Nucleotide metabolism: Characteristics and types of Nucleic acids,                                                         |       |           |
|      |       | Biosynthesis and catabolism of purines and pyrimidines                                                                     |       |           |
|      | 2.4   | Storage and Expression of Genetic Information: DNA Structure                                                               |       |           |
|      |       | and Replication, RNA Structure and Synthesis, Protein Synthesis                                                            |       |           |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



|   | 1   | (Gujarat Private State U                                        | niversity Act 4 d | of 2018) |
|---|-----|-----------------------------------------------------------------|-------------------|----------|
|   |     | Fundamental Instrumentation                                     |                   |          |
|   | 3.1 | Electrochyemistry : pH and buffers, Potentiometric and          |                   |          |
|   |     | Conductometric titration                                        |                   |          |
| 3 | 3.2 | Microscopy: Light, phase contrast, fluorescence, scanning and   | 15                | 25%      |
| 3 |     | transmission electron microscopy and other advanced microscopy  | 15                | 2370     |
|   | 3.3 | Biophysical methods: Analysis of biomolecules using UV/visible, |                   |          |
|   |     | fluorescence, circular dichroism, NMR and ESR spectroscopy      |                   |          |
|   | 3.4 | Atomic Absorption Spectrophotometer and Flame photometry        |                   |          |
|   |     | Chromatography and Advanced Environmental                       |                   |          |
|   |     | Instrumentation                                                 | -                 |          |
|   | 4.1 | Chromatographic methods: Paper chromatography, gel- filtration, |                   |          |
| 4 |     | ion-exchange and affinity chromatography; Thin layer            | 15                | 250/     |
| 4 | 4.2 | Gas chromatography and High pressure liquid (HPLC)              | 15                | 25%      |
|   |     | chromatography                                                  |                   |          |
|   | 4.3 | Biosensors: Principle and applications                          |                   |          |
|   | 4.4 | Methods in field biology                                        |                   |          |

## **Suggested Readings:**

- 1. Biochemistry 3rd edition (2005) by Reginald H. Garrett, Charles M. Grisham.
- 2. Lehninger's Principles of Biochemistry by David L. Nelson and Michael M. Cox, Macmillan Worth publisher, 2009.
- 3. Biochemistry 6th edition by Jeremy M Berg, Lubert Stryer, John L. Tymoczko, 2008.
- 4. Murray, R.K., Granner, B.K., Mayes, P.A., Rodwell, V.W., Harper's Biochemistry Prentice Hall International, 2008.
- 5. Voet and Voet's Biochemistry, D. Voet and J. Voet 3rd Edition, John Wiley and Sons Inc., 2005.
- 6. Biochemistry, 5th Ed by Eric E Conn, Paul K Stumpf, George Bruening and Roy H Doi, 2009.
- 7. Wilson, K. and Walker, J., (2010). Principles and Techniques of Biochemistry and Molecular Biology, 7th edition, Cambridge University Press (Low price edition), New York.
- 8. Webster J. G., (2009). Bioinstrumentation, Student edition, Wiley India (P) Ltd. New Delhi.
- 9. Sharma, B. K., (2005). Instrumental methods of chemical analysis, 24th edition, GOEL publishing house, Meerut.



Faculty of Science Gokul Science College





Subject Code: MES103DSC Subject Name: Biochemistry & Analytical techniques  Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

## Semester: I Faculty Name/s: Pranav Patel

### **Course Outcomes:** At the end of the course, students shall be able to

| CO1 | Be able to undertake investigations and perform analyses that provide information about biochemical questions and help to solve biochemical problems.                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | To reinforce chemical principles central to analytical chemistry. To introduce instrumental techniques for chemical measurement. To develop critical thinking for interpreting analytical data.  |
| CO3 | Understand the catalytic role of enzymes, the importance of enzyme inhibitors in the design of new drugs, therapeutic and diagnostic applications of enzymes                                     |
| CO4 | The purpose of analytical techniques is to determine a parameter, usually by means of an instrument, and by taking advantage of the physical, chemical or biological properties of the material. |
| CO5 |                                                                                                                                                                                                  |

# **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |  |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |
| CO1      | 3   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |  |
| CO2      | 2   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |  |
| CO3      | 1   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |  |
| CO4      | 2   | 2                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |  |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |  |

# **CO-PO & CO-PSO Mapping**

| Course   | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |                  |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO2      |                  |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |                  |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO4      |                  |     |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO5      |                  |     |     |     |     |     |     |     |     |      |      |      |      |      |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



|         |              |                            |                         | State Oniversity Act 4 01 2018) |  |  |  |  |
|---------|--------------|----------------------------|-------------------------|---------------------------------|--|--|--|--|
|         | GO           | KUL GLOBAL U               | UNIVERSITY, SIDH        | PUR                             |  |  |  |  |
| Progr   | amme Code    | MES                        | Programme Name          | M.Sc. Environmental<br>Science  |  |  |  |  |
| 0       | Course Code  | MES103DSC                  | Semester                | Ι                               |  |  |  |  |
|         |              | Ecology a                  | nd Biodiversity         |                                 |  |  |  |  |
| C       | ourse type : | Discipline Specific        | <b>Total Credit :</b>   | 04                              |  |  |  |  |
| C       | ourse type.  | Course                     | Total Credit .          | 04                              |  |  |  |  |
| Teachir | ng time      | Examination Marking scheme |                         |                                 |  |  |  |  |
| (hou    | urs)         |                            | Examination Marking Sch |                                 |  |  |  |  |
| Theory  | Practical    | Internal                   | External                | Total                           |  |  |  |  |
| (hrs)   | (hrs)        | (Marks)                    | (Marks)                 | (Marks)                         |  |  |  |  |
| 60      |              | 30                         | 70 (Paper of 3 hrs)     | 100                             |  |  |  |  |

| Unit | Topic | Content                                                                               | Hours | Weightage |
|------|-------|---------------------------------------------------------------------------------------|-------|-----------|
|      |       | Principle and concept of Ecology                                                      |       |           |
|      | 1.1   | Characteristics of a population; population growth curves and regulation;             |       |           |
| 1    | 1.2   | Levels of Ecology; Population, Community, Ecosystem,<br>Biome                         | 15    | 25%       |
|      | 1.3   | Ecosystem – Food Chain & Food Web. Ecological<br>Pyramid:                             |       |           |
|      | 1.4   | Pyramid of Numbers, Pyramid of Biomass,<br>Pyramid of Energy                          |       |           |
|      |       | Natural history of Indian subcontinent                                                |       |           |
|      | 2.1   | Major habitat types of the subcontinent, geographic origins and migrations of species |       |           |
| 2    | 2.2   | Common Indian mammals, birds                                                          | 15    | 25%       |
|      | 2.3   | Seasonality and phenology of the subcontinent                                         |       |           |
|      | 2.4   | Hotspots of Indian Biological diversity                                               |       |           |
|      |       | Introduction to Biodiversity                                                          |       |           |
|      | 3.1   | Introduction, Types of Biodiversity; Species Diversity                                |       |           |
| 3    | 3.2   | Genetic Diversity, Ecosystem Diversity.                                               | 15    | 25%       |
| 5    | 3.3   | Values and benefits of Biodiversity                                                   | 15    | 2370      |
|      | 3.4   | Uses and Importance of biodiversity. Factor Promoting High Diversity.                 |       |           |
| 4    |       | Losses and Conservation of Biodiversity                                               | 15    | 25%       |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



| 4.1 | Major Causes of loss of biodiversity.                                                              |  |
|-----|----------------------------------------------------------------------------------------------------|--|
| 4.2 | Threatened biodiversity, IUCN red list categories.                                                 |  |
| 4.3 | Conservation and Management of Biodiversity                                                        |  |
| 4.4 | Issues in conservation of biodiversity. Protected areas of<br>Biodiversity. Biodiversity in India. |  |

## **Suggested Readings:**

- Ray, S and Ray, A.K. Biodiversity and Biotechnology. *New Central Book Agency* (*P*)*Ltd.*
- Sharma, P.D. (2018). Text Book of Ecology and Environment. Rastogi Publications.
- Sharma, J.P. (2017). Text Book of Environmental Studies. University Science Press.
- Kumar, S. (2018). Fundamental of Environmental Studies. *Sultan Chand Education Publisher*.







# Subject Code: MES104DSC Subject Name: Ecology & Biodiversity

#### (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018) Semester: I

## **Faculty Name/s: Pranav Patel**

#### **Course Outcomes:** At the end of the course, students shall be able to

| CO1 | Understand, explain and discuss species distribution patterns and their changes at both local and global scales.                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Preserving species diversity, utilizing species, sustaining ecosystems, preserving life-<br>supporting systems, and crucial ecological processes. |
| CO3 | Helps us understand how organisms live with each other in unique physical environments.                                                           |
| CO4 | To understand the distribution of biotic and abiotic factors of living things in the environment.                                                 |
| CO5 |                                                                                                                                                   |

## **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |  |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |
| CO1      | 2   | 2                | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |  |
| CO2      | 2   | 1                | 1   | -   | -   | -   | -   | 2   | 1   | -    |      |      |  |
| CO3      | 1   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |  |
| CO4      | 2   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |  |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |  |

## **CO-PO & CO-PSO Mapping**

| Course   |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |     |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO2      |     |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |     |     |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO4      |     |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO5      |     |     |     |     |     |     |     |     |     |      |      |      |      |      |





University Campus, State Highway-41,



# GOKUL GLOBAL UNIVERSITY, SIDHPUR Programme Code MES Programme Name M.Sc.Environmental Course Code MES106SE Semester I

# **Environmentally Sustainable Technologies (EST)**

| (               | Course type : | Subject ElectiveTotal Credit :02 |          |         |  |  |  |  |  |
|-----------------|---------------|----------------------------------|----------|---------|--|--|--|--|--|
| Teachiı<br>(hoı | 0             | Examination Marking scheme       |          |         |  |  |  |  |  |
| Theory          | Practical     | Internal                         | External | Total   |  |  |  |  |  |
| (hrs)           | (hrs)         | (Marks)                          | (Marks)  | (Marks) |  |  |  |  |  |
| 30              |               | 15                               | 35       | 50      |  |  |  |  |  |

| Unit | Торіс | Content                                       | Hours | Weightage |  |
|------|-------|-----------------------------------------------|-------|-----------|--|
|      |       | Sustainable Development                       |       |           |  |
|      | 1.1   | Overview                                      |       |           |  |
|      |       | Definition                                    |       |           |  |
| 1    |       | Need and Significance                         |       |           |  |
|      |       | Barriers                                      | 15    | 50%       |  |
|      | 1.2   | Categories of Sustainable Development         |       |           |  |
|      | 1.3   | Measurable Benefits.                          |       |           |  |
|      |       | <b>Environmental Sustainable Technologies</b> |       |           |  |
|      | 2.1   | Scope, Need                                   |       |           |  |
|      | 2.2   | Characteristics of EST                        |       |           |  |
|      |       | • Reduction in pollution                      |       |           |  |
| 2    |       | • Reduction in Wastes                         | 15    | 500/      |  |
|      | 2.3   | Transferring Technologies.                    | 10    | 50%       |  |
|      |       | • Benefits                                    |       |           |  |
|      |       | • Barriers                                    |       |           |  |
|      | 2.4   | Role of Government                            | 1     |           |  |

#### **Suggested readings:**

1. Sinclair A. R., Fryxell J M and Caughly G. (2006)



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

- 2. Wildlife Ecology, Conservation and Management. Blackwell Publishing, U.S.A.
- 3. Gopal R. (1992) Fundamentals of Wildlife Management. Justice Home, Allahabad, India.
- 4. Jairajpuri M. S. (1990) Collection and preservation of animals. Zoological Survey of India.
- 5. Magguran, A.E. (1996). Ecological diversity and its measurements. Princeton University.
- 6. Gadgil, M. (2002) A methodology mannual for scientific inventorying, monitoring and conservation of Biodiversity
- 7. Hickman C. P., et al. 2006 Integrated principals of Zoology, McGraw Hill Higher Education. 931pp. 14th edition.







# Subject Code: MES104DSC Subject Name: Environmentally Sustainable Technologies

#### Semester: I Faculty Name/s: Pranav Patel

# **Course Outcomes:** At the end of the course, students shall be able to

| C01 | Students will be able to define sustainability and identify major sustainability challenges.                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| CO2 | Students will have an understanding of the carrying capacity of ecosystems as related to providing for human needs.         |
| CO3 | Educational goals that aim to support students' full development and well-being in an holistic and sustainable perspective. |
| CO4 | Apply fundamental and disciplinary concepts and methods in ways appropriate to their principal areas of study.              |
| CO5 |                                                                                                                             |

# CO - PO Competency and Program Indicators (PI)

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 3   | 2                | 1   | -   | -   | -   | -   | 1   | 2   | -    |      |      |
| CO2      | 2   | 1                | 2   | -   | -   | -   | -   | 2   | 1   | -    |      |      |
| CO3      | 1   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO4      | 2   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |

# CO-PO & CO-PSO Mapping

| Course   |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |     |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO2      |     |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |     |     |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO4      |     |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO5      |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

# GOKUL GLOBAL UNIVERSITY, SIDHPUR



Faculty of Science Gokul Science College University Campus, State Highway-41,





| Progr  | amme Code                              | MES       |                          | M.Sc .Environmental |  |  |  |  |  |  |  |
|--------|----------------------------------------|-----------|--------------------------|---------------------|--|--|--|--|--|--|--|
| ITUgi  |                                        |           |                          | Science             |  |  |  |  |  |  |  |
| C      | Course Code                            | MES101PRA | Semester                 | Ι                   |  |  |  |  |  |  |  |
|        | Biochemistry and Analytical Techniques |           |                          |                     |  |  |  |  |  |  |  |
| С      | ourse type :                           | Practical | Total Credit :           | 08                  |  |  |  |  |  |  |  |
|        | ing time<br>ours)                      |           | Examination Marking sche | me                  |  |  |  |  |  |  |  |
| Theory | Practical                              | Internal  | External                 | Total               |  |  |  |  |  |  |  |
| (hrs)  | (hrs)                                  | (Marks)   | (Marks)                  | (Marks)             |  |  |  |  |  |  |  |
|        |                                        |           | 75                       | 75                  |  |  |  |  |  |  |  |

# **LIST OF EXPERIMENTS**

- 1. To study climatic conditions and weather maps
- 2. Determination of Atmospheric humidity
- 3. To study the climatic conditions in open field, desert, wet land and under tree shed
- 4. Estimation of carbohydrates (Coles & DNS method)
- 5. Estimation of proteins (Folin, Bradford and Biurates)
- 6. Estimation of lipids







|                          | ~                   |                            |                      |                                 |  |  |  |  |  |  |
|--------------------------|---------------------|----------------------------|----------------------|---------------------------------|--|--|--|--|--|--|
|                          | G(                  | <b>JKUL GLOBA</b>          | AL UNIVERSITY, SIDHI | PUR                             |  |  |  |  |  |  |
| Progra                   | amme Code           | MES                        | Programme Name       | M. Sc. Environmental<br>Science |  |  |  |  |  |  |
| Course Code              |                     | MES102PRA                  | Semester             | Ι                               |  |  |  |  |  |  |
| Ecology and Biodiversity |                     |                            |                      |                                 |  |  |  |  |  |  |
| C                        | Course type:        | Practical                  | Total Credit :       | 08                              |  |  |  |  |  |  |
| Teaching time<br>(hours) |                     | Examination Marking scheme |                      |                                 |  |  |  |  |  |  |
| Theory                   | Practical           | Internal                   | External             | Total                           |  |  |  |  |  |  |
| (hrs)                    | (hrs) (hrs) (Marks) |                            | (Marks)              | (Marks)                         |  |  |  |  |  |  |
|                          |                     |                            | 75                   | 75                              |  |  |  |  |  |  |

# **LIST OF EXPERIMENTS**

#### Study of Habitat and vegetation

- 1. Different habitat types in the ecosystem
- Quantification of vegetation (Species area curve method, Quadrate method, Transect method, Ten tree method)
- 3. Modified Whittaker Plot method
- Quantitative analysis of vegetation by IVI, Density, Frequency, Abundance, Richness







|      |                  | GO                       | KUL GLOBAL U                  | JNIVERSITY, SIDH                 | PUR                   |           |
|------|------------------|--------------------------|-------------------------------|----------------------------------|-----------------------|-----------|
|      | Progra           | mme Code                 | MES                           | Programme Name                   | M.Sc. Envi<br>Science | ronmental |
|      | Co               | ourse Code               | MES201DSC                     | Semester                         | Π                     |           |
|      |                  |                          | Environmo                     | ental Chemistry                  |                       |           |
|      | Co               | ourse type :             | Discipline Specific<br>Course | Total Credit :                   |                       | 04        |
| ]    | Feaching<br>(hou | rs)                      |                               | Examination Marking sch          | eme                   |           |
| The  | eory             | Practical                | Т                             | otal                             |                       |           |
| (h   | rs)              | (hrs)                    | (Marks)                       | (Marks)                          | (M                    | arks)     |
| 6    | 0                |                          | 30                            | 70 (Paper of 3 hrs)              | 1                     | .00       |
| Unit | Topic            |                          | Cont                          |                                  | Hours                 | Weightage |
|      |                  |                          | Chemistry and Conti           | rol of Air Pollution             |                       |           |
| 1    | 1.1              | Definition, t<br>control | types of pollution and pol    | 15                               | 25%                   |           |
|      | 1.2              | Chemistry a              | and control of air pollution  | n: Measurement of air pollution  | ,                     |           |
|      |                  |                          | chniques and testing of a     | •                                |                       |           |
|      | 1.3              | Control mea              | asures of air pollution: Pa   | rticulate control technology     |                       |           |
|      | 1.4              | Control of g             | aseous pollutants, SOx, N     | Ox control technology.           |                       |           |
|      |                  |                          | Chemistry and contro          | l of water pollution             |                       |           |
|      | 2.1              | Fresh water              | and marine pollutants, s      | ources of water pollutants       |                       |           |
| 2    | 2.2              | Domestic w               | astes and their impacts o     | 15                               | 25%                   |           |
|      | 2.3              | Treatment o              | of polluted water, water p    | urification, domestic and indust | rial                  |           |
|      |                  | waste wate               |                               |                                  |                       |           |
|      | 2.4              | Desalination             | n of water                    |                                  |                       |           |
|      |                  |                          | Chemistry and contro          | ol of land pollution             |                       |           |
| 3    | 3.1              | Sources and              | types of soil pollutants      |                                  | 15                    | 25%       |
| 5    | 3.2              | Interaction              | of pollutants with soil cor   | nponents and organisms           | 15                    | 23/0      |
|      | 3.3              | Control mea              | asures of soil pollution      |                                  |                       |           |
|      | 3.4              | Solid and ha             | azardous waste disposal n     |                                  |                       |           |
|      |                  |                          |                               |                                  |                       |           |
| 4    | 4.1              | Managing in              | ndustrial wastes and envir    | ronmental degradation            | 15                    | 25%       |
|      | 4.2              | Cleaner bio              | processes for pollution co    | ontrol                           |                       |           |
|      | 4.3              | CDM Techno               | ologies                       |                                  |                       |           |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



#### **Suggested Readings:**

#### **Reference Books:**

- 1. Environmental Engineering Devis Cornwell 3rd edition (1998). Mc Graw Hill.
- 2. Environmental Engineering Gerald Kiely (1998) Mc graw Hill
- 3. Environmental Engineering A global Prospective (2000) edt by Gary Vanloon& Duffy. Oxford Pub.
- 4. Encyclopedia of Environmental pollution and Control R.K.Trivedi
- 5. An Introduction to air Pollution R.K.Trivedi and P.K.God (1998) Technology Pub.
- 6. Environmental Pollution control Engineering C.S.Rao (1995) Wiley Eastern ltd.
- 7. Nature and properties of Soil- N.C.Brady (1997) Mc. Millan pub.
- 8. Environmental Chemistry A.K.De(1995), Widy Eastern.
- 9. Chemistry for Environmental Engineering- Sawyer, Mac Carty, Partein (1994) Mc. Graw Hill
- 10. Introduction to Environmental engineering and Sciences Gilbert N. Masters (1998) Printice hall of India Pvt. Ltd New Delhi
- 11. Air pollution (7 volume) A.C.Stern
- 12. Air pollution Control Engineering Noel De nevers Second edition Mc.Graw Hill international edition.
- 13. Environmental Pollution Management and Control for sustainable Development R.K.Khitoliya, S.Chand and company, New Delhi







# Subject Code: MES201DSC Subject Name: Environmental Chemistry

 Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

## Semester: II Faculty Name/s: Pranav Patel

#### **Course Outcomes:** At the end of the course, students shall be able to

| CO1 | It is important to study environmental chemistry as it helps in understanding and solving various environmental issues.                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Environmental Chemistry works together to give information for threat assessment, repair research, and establishing the level of environmental management needed for the entire system                                         |
| CO3 | Students will gain an understanding of: chemical reactions and strategies to balance them. the relative quantities of reactants and products. the fundamental properties of atoms, molecules, and the various states of matter |
| CO4 | Environmental Chemists are therefore often the more public-facing chemists, as the research they conduct helps inform decisions that affect all of us.                                                                         |
| CO5 |                                                                                                                                                                                                                                |

## **CO - PO Competency and Program Indicators (PI)**

| Course   |     |     |     |     | Pı  | ogran | n Outc | omes |     |      |      |      |
|----------|-----|-----|-----|-----|-----|-------|--------|------|-----|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6   | PO7    | PO8  | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2   | 2   | 2   | -   | -   | -     | -      | 2    | 1   | -    |      |      |
| CO2      | 2   | 1   | 1   | -   | -   | -     | -      | 1    | 1   | -    |      |      |
| CO3      | 3   | 2   | 2   | -   | -   | -     | -      | 2    | 2   | -    |      |      |
| CO4      | 3   | 1   | 1   | -   | -   | -     | -      | 1    | 1   | -    |      |      |
| CO5      |     |     |     |     |     |       |        |      |     |      |      |      |

## **CO-PO & CO-PSO Mapping**

| Course   |     |     |     |     |     | Ι   | Program | m Out | comes |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|---------|-------|-------|------|------|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8   | PO9   | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO2      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO3      |     |     |     |     |     |     |         |       |       |      |      |      | 3    | -    |
| CO4      |     |     |     |     |     |     |         |       |       |      |      |      | 1    | -    |
| CO5      |     |     |     |     |     |     |         |       |       |      |      |      |      |      |





University Campus, State Highway-41,



|                 | GOI          | KUL GLOBAL U                  | <b>INIVERSITY, SIDH</b> | PUR                            |
|-----------------|--------------|-------------------------------|-------------------------|--------------------------------|
| Progra          | amme Code    | MES                           | Programme Name          | M.Sc. environmental<br>Science |
| C               | ourse Code   | MES202DSC                     | Semester                | Π                              |
|                 | Env          | vironmental Modeli            | ng, Remote sensing and  | GIS                            |
| C               | ourse type : | Discipline Specific<br>Course | Total Credit :          | 04                             |
| Teachin<br>(hou | 0            |                               | Examination Marking sch | eme                            |
| Theory          | Practical    | Internal                      | External                | Total                          |
| (hrs)           | (hrs)        | (Marks)                       | (Marks)                 | (Marks)                        |
| 60              |              | 30                            | 70 (Paper of 3 hrs)     | 100                            |

| Unit | Topic | Content                                                                                    | Hours | Weightage |
|------|-------|--------------------------------------------------------------------------------------------|-------|-----------|
|      |       | Mathematical modeling                                                                      |       |           |
| 1    | 1.1   | Basics of mathematical modeling, its applications and limitations in environmental science | 15    | 25%       |
|      | 1.2   | Environmental Planning through mathematical modeling                                       |       |           |
|      | 1.3   | Possible steps in modeling approaches                                                      |       |           |
|      | 1.4   | Application of Modeling in Industries and pollution control                                |       |           |
|      |       | Remote Sensing                                                                             |       |           |
| 2    | 2.1   | Introduction to remote sensing, physical basis for remote sensing                          |       |           |
| -    | 2.2   | Types of satellite information                                                             |       |           |
|      | 2.3   | Process of information extraction through RS                                               | 15    | 25%       |
|      | 2.4   | Remote sensing as a tool for study and management of ecosystems                            |       |           |
| 3    |       | GIS: I                                                                                     | - 15  | 25%       |
| 3    | 3.1   | GPS: Introduction, Principle, working and application                                      | 15    | 2370      |
|      | 3.2   | Toposheet : Reading, Identification, Scanning                                              |       |           |
|      | 3.3   | Geographical Information System (GIS) Introduction and Principle                           |       |           |
|      | 3.4   | Creation of GIS Database (Data Conversion from GPS and Toposheets)                         |       |           |
|      | 3.5   | Setting up a GIS Laboratory                                                                |       |           |
| 4    |       | GIS: II                                                                                    | - 15  | 25%       |
| т    | 4.1   | Georeferensing and Digitization of Data                                                    | 15    | 2370      |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



| 4.2 | GIS Data structure : Raster and Vector      |  |
|-----|---------------------------------------------|--|
| 4.3 | GIS analysis Capabilities                   |  |
| 4.4 | Introduction to Eco-informatics in research |  |

#### **Suggested Readings:**

- 1. Environmental Engineering Devis Cornwell 3rd edition (1998). Mc Graw Hill.
- 2. Environmental Engineering Gerald Kiely (1998) Mc graw Hill
- 3. Environmental Engineering A global Prospective (2000) edt by Gary Vanloon& Duffy. Oxford Pub.
- 4. Encyclopedia of Environmental pollution and Control R.K.Trivedi
- 5. An Introduction to air Pollution R.K.Trivedi and P.K.God (1998) Technology Pub.
- 6. Environmental Pollution control Engineering C.S.Rao (1995) Wiley Eastern ltd.
- 7. Nature and properties of Soil- N.C.Brady (1997) Mc. Millan pub.
- 8. Environmental Chemistry A.K.De(1995), Widy Eastern.
- 9. Chemistry for Environmental Engineering- Sawyer, Mac Carty, Partein (1994) Mc. Graw Hill
- 10. Introduction to Environmental engineering and Sciences Gilbert N. Masters (1998) Printice hall of India Pvt. Ltd New Delhi
- 11. Air pollution (7 volume) A.C.Stern
- 12. Air pollution Control Engineering Noel De nevers Second edition Mc.Graw Hill international edition.
- 13. Environmental Pollution Management and Control for sustainable Development R.K.Khitoliya, S.Chand and company, New Delhi







# Subject Code: MES202DSC Subject Name: Environmental modeling remote sensing & GIS

Semester: II Faculty Name/s: Pranav Patel

## **Course Outcomes:** At the end of the course, students shall be able to

| CO1 | Explain and communicate quantitative remote-sensing principles and integrate different tools for remote sensing data analysis.                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Perform image corrections and enhancements and generate high-level remote sensing products                                                                                                                                                        |
| CO3 | Remote Sensing data & GIS along with some models can be used to monitor and mapping of natural resources and environmental pollution in addition to natural disasters like cyclone, tsunami, avalanche, floods, drought, hailstorm, wildfire etc. |
| CO4 | Environmental modelling may be used purely for research purposes, and improved<br>understanding of environmental systems, or for providing an interdisciplinary analysis that can<br>inform decision making and policy.                           |
| CO5 |                                                                                                                                                                                                                                                   |

## **CO - PO Competency and Program Indicators (PI)**

| Course   |     |     |     |     | Pı  | ogran | 1 Outc | omes |     |      |      |      |
|----------|-----|-----|-----|-----|-----|-------|--------|------|-----|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6   | PO7    | PO8  | PO9 | PO10 | PO11 | PO12 |
| CO1      | 3   | 2   | 2   | -   | -   | -     | -      | 2    | 2   | -    |      |      |
| CO2      | 2   | 1   | 2   | -   | -   | -     | -      | 2    | 1   | -    |      |      |
| CO3      | 3   | 2   | 2   | -   | -   | -     | -      | 2    | 2   | -    |      |      |
| CO4      | 3   | 1   | 1   | -   | -   | -     | -      | 1    | 1   | -    |      |      |
| CO5      |     |     |     |     |     |       |        |      |     |      |      |      |

# **CO-PO & CO-PSO Mapping**

| Course   |     |     |     |     |     | I   | Program | m Out | comes |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|---------|-------|-------|------|------|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8   | PO9   | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |     |     |     |     |     |         |       |       |      |      |      | 3    | -    |
| CO2      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO3      |     |     |     |     |     |     |         |       |       |      |      |      | 3    | -    |
| CO4      |     |     |     |     |     |     |         |       |       |      |      |      | 1    | -    |
| CO5      |     |     |     |     |     |     |         |       |       |      |      |      |      |      |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



|                 | GOI          | KUL GLOBAL U        | <b>INIVERSITY, SIDH</b> | PUR                            |
|-----------------|--------------|---------------------|-------------------------|--------------------------------|
| Progra          | amme Code    | MES                 | Programme Name          | M.Sc. Environmental<br>Science |
| C               | ourse Code   | MES203DSC           | Semester                | Π                              |
|                 |              | Solid Was           | te Management           |                                |
| C               | ourse type : | Discipline Specific | Total Credit :          | 04                             |
|                 | burse type . | Course              | Iotai Cicuit .          | 07                             |
| Teachin<br>(hou | 0            |                     | Examination Marking sch | eme                            |
| Theory          | Practical    | Internal            | External                | Total                          |
| (hrs)           | (hrs)        | (Marks)             | (Marks)                 | (Marks)                        |
| 60              |              | 30                  | 70 (Paper of 3 hrs)     | 100                            |

| Unit | Topic | Content                                                          | Hours | Weightage |
|------|-------|------------------------------------------------------------------|-------|-----------|
|      |       | Introduction to Solid Waste Handling and Management              |       |           |
|      | 1.1   | Classification of solid waste- source based and their types      |       |           |
|      | 1.2   | Waste characteristics and quantitative estimation of municipal   |       |           |
| 1    |       | solid waste                                                      | 15    | 25%       |
|      | 1.3   | Waste generation and composition, Factors affecting solid waste  |       |           |
|      |       | management                                                       |       |           |
|      | 1.4   | Material flow Methodology.                                       |       |           |
|      |       | Processing of Urban waste                                        |       |           |
|      | 2.1   | Methods of collection                                            |       |           |
|      | 2.2   | storage, transportation, Material separation, Processing on site |       |           |
| 2    |       | and off site for source reduction                                | 15    | 25%       |
|      | 2.3   | Methods of disposal- Dumping, Sanitary Landfill, Incineration,   |       |           |
|      |       | Pyrolysis, Composting                                            |       |           |
|      | 2.4   | Ocean Dumping, Leachate Management for MSW landfills.            |       |           |
|      |       | Applied Uses of Solid Waste                                      |       |           |
|      | 3.1   | Biogas production, Composting and Vermicomposting,               |       |           |
| 3    |       | International cooperation in municipal solid waste management,   | 15    | 25%       |
|      | 3.2   | Integrated Waste management                                      |       |           |
|      | 3.3   | Municipal Solid waste Management & Handling Rules, 2000.         |       |           |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



| 4.1 | Solid Waste Management Rules                    |   |  |
|-----|-------------------------------------------------|---|--|
| 4.2 | Plastic Waste Management Rules                  | 1 |  |
| 4.3 | Bio-Medical Waste Management Rules              | 1 |  |
| 4.4 | Hazardous and Other Waste (Management and Trans | l |  |
|     | boundary Movement) Rules                        |   |  |

#### **Suggested Readings:**

- George Tchobanaglous, Hilary Theissen and Samuel A. Vigil, (1993), Integrated Solid Waste Management: Engineering Principles and Management Issues –, McGraw-Hill ScienceEngineering.
- 2. Bhide and Sundaresan (1983), Solid Waste Management in Developing Countries, Indian National Scientific Documentation Centre. NewDelhi.
- 3. Peavy, H.S., Rowe, D.R., and Tchobanoglous, G., (1986), EnvironmentalEngineering, McGraw Hill Publishing company, NewYork.
- 4. Sincero, A.P., and Sincero, G.A., (1999), Environmental Engineering A Design Approach, Prentice- Hall of India Pvt. Ltd., NewDelhi.
- 5. Sasikumar K and Krishna S. G., (2009), Solid Waste Management, PHI Learning Pvt.Ltd., NewDelhi.







# Subject Code: MES203DSC Subject Name: Solid waste management

# Semester: II Faculty Name/s: Pranav Patel

Course Outcomes: At the end of the course, students shall be able to

| CO1 | Minimize the Production of Waste. Proper management practices help minimize the garbage and scraps that need handling                                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Reduce Pollution Effects. Secondly, it's vital to lower the impact garbage has on pollution.                                                                                                         |
| CO3 | Waste management is aimed to reduce the adverse effects of waste on environment, health and the beauty of nature.                                                                                    |
| CO4 | Make physical and chemical analysis of municipal solid wastes and apply them for a management system that will be set up. make route optimization for a solid waste collection and transport system. |
| CO5 |                                                                                                                                                                                                      |

# **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO2      | 2   | 1                | 2   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO3      | 3   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO4      | 2   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |

# **CO-PO & CO-PSO Mapping**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO2      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |     |                  |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO4      |     |                  |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |      |      |





University Campus, State Highway-41, Siddhpur - 384151, Dist. Patan, Gujarat, INDIA, Mobile : 9510973863

E-Mail: dean.fac.sci@gokuluniversity.ac.in, Website: www.gokuluniversity.ac.in



|                 | GOKUL GLOBAL UNIVERSITY, SIDHPUR |                            |                     |         |  |  |  |  |  |  |
|-----------------|----------------------------------|----------------------------|---------------------|---------|--|--|--|--|--|--|
| Progra          | amme Code                        | MES                        | Programme Name      |         |  |  |  |  |  |  |
|                 | laura Cada                       | MES204DSC                  | Comostor            | Science |  |  |  |  |  |  |
|                 | ourse Code                       | MES204DSC                  | Semester            | П       |  |  |  |  |  |  |
|                 | Disaster Management              |                            |                     |         |  |  |  |  |  |  |
|                 | ourse tune .                     | Discipline Specific        | Total Credit :      | 04      |  |  |  |  |  |  |
| C               | ourse type :                     | Course                     | Iotal Credit :      | 04      |  |  |  |  |  |  |
| Teachin<br>(hou | 0                                | Examination Marking scheme |                     |         |  |  |  |  |  |  |
| Theory          | Practical                        | Internal                   | External            | Total   |  |  |  |  |  |  |
| (hrs)           | (hrs)                            | (Marks)                    | (Marks)             | (Marks) |  |  |  |  |  |  |
| 60              |                                  | 30                         | 70 (Paper of 3 hrs) | 100     |  |  |  |  |  |  |

| Unit | Topic | Content                                                 | Hours | Weightage |  |
|------|-------|---------------------------------------------------------|-------|-----------|--|
|      |       | Unit 1:Understanding Disaster                           |       |           |  |
|      | 1.1   | Concept and definitions of disaster;                    |       |           |  |
| 1    | 1.2   | Hazard, vulnerability, risk, capacity                   | 15    | 25%       |  |
|      | 1.3   | Types, trends,<br>causes and consequences               |       |           |  |
|      | 1.4   | Control of various disasters, viz., Geological, Hydro   |       |           |  |
|      |       | meteorological, Biological and Technological disasters. |       |           |  |
|      |       | Disaster Management                                     |       |           |  |
|      | 2.1   | Vulnerability of natural hazards in India;              | 15    |           |  |
| 2    | 2.2   | Disaster management cycle                               |       | 25%       |  |
|      | 2.3   | Activities associated with various stages of cycles     |       |           |  |
|      | 2.4   |                                                         |       |           |  |
|      |       | Institutional Framework                                 |       |           |  |
| 3    | 3.1   | Constitutional frameworks in India                      | 15    | 25%       |  |
| 3    | 3.2   | Role of Governments                                     | - 15  | 2370      |  |
|      | 3.3   | Non Governments and State Government agencies           |       |           |  |



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



|   | 3.4 |                                                                                   |    |     |
|---|-----|-----------------------------------------------------------------------------------|----|-----|
|   |     | IV Risk Assessment                                                                |    |     |
|   | 4.1 | . Concept and evaluation of risk                                                  |    |     |
|   | 4.2 | Hazard identification; Exposure assessment; Hazard assessment;                    |    |     |
| 4 |     | Risk characterization                                                             | 15 | 25% |
|   | 4.3 | Man-made Environmental degradation                                                |    |     |
|   | 4.4 | Problems related to toxic wastes and chemicals and radioactive substance disposal |    |     |

#### **Suggested Readings:**

1. Disaster Management by Savindra Singh, JeetendraSingh

2. Disaster Management and Preparedness by Nidhi Gupta, Dhawan and AmbrinaSardar Khan

3.Safety and Disaster Management by Dr S Arulsay and J Jeyadevi

4. Disaster Mitigation: Experiences & mitigations by Pradeep Sahni, AlkaDhameja, Uma Medury

5. Disaster Management at Health care settings by Shreen Gaber







## Subject Code: MES204DSC Subject Name: Disaster management

## Semester: II Faculty Name/s: Pranav Patel

Course Outcomes: At the end of the course, students shall be able to

| CO1 | Develop a deep understanding of disaster resilience, risk mitigation, and recovery policies as they arise from natural hazards around the globe                                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | If the students are properly trained, they can rush to the disaster spot and can help the disaster management team for quick rehabilitation and resettlement of victims at times of floods, earthquakes and drought etc.                                                     |
| CO3 | Disaster education aims to provide knowledge among individuals and groups to take actions to reduce their vulnerability to disasters.                                                                                                                                        |
| CO4 | After studying this course, you should be able to: understand what is meant by management<br>and managerial effectiveness. identify the roles which are fulfilled while working as a<br>manager. identify managerial activities that contribute to managerial effectiveness. |
| CO5 |                                                                                                                                                                                                                                                                              |

# **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO2      | 2   | 1                | 1   | -   | -   | -   | -   | 2   | 1   | -    |      |      |
| CO3      | 3   | 2                | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |
| CO4      | 3   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |

# **CO-PO & CO-PSO Mapping**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO2      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |     |                  |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO4      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |      |      |



Faculty of Science Gokul Science College



University Campus, State Highway-41,



|                                              | GOKUL GLOBAL UNIVERSITY, SIDHPUR |                  |                          |                     |  |  |  |  |  |
|----------------------------------------------|----------------------------------|------------------|--------------------------|---------------------|--|--|--|--|--|
| Progr                                        | amme Code                        | MES              | Programme Name           | M.Sc. Environmental |  |  |  |  |  |
| 11051                                        |                                  |                  |                          | Science             |  |  |  |  |  |
| (                                            | Course Code                      | MES206SE         | Semester                 | II                  |  |  |  |  |  |
| Industrial Wastes and their management (IWM) |                                  |                  |                          |                     |  |  |  |  |  |
| C                                            | ourse type :                     | Subject Elective | Total Credit :           | 02                  |  |  |  |  |  |
| Teachin<br>(hou                              | 0                                |                  | Examination Marking sche | me                  |  |  |  |  |  |
| Theory                                       | Practical                        | Internal         | External                 | Total               |  |  |  |  |  |
| (hrs)                                        | (hrs)                            | (Marks)          | (Marks)                  | (Marks)             |  |  |  |  |  |
| 30                                           |                                  | 15               | 35                       | 50                  |  |  |  |  |  |

| Unit | Topic | Content                                                                                                                                   | Hours | Weightage |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
|      |       | Unit-1                                                                                                                                    |       |           |
|      | 1.1   | Introduction to industrial Wastes                                                                                                         |       |           |
| 1    | 1.2   | Sources and classification of Industrial Wastes                                                                                           | 15    | 50%       |
|      | 1.3   | 15                                                                                                                                        | 3070  |           |
|      | 1.4   | Industrial Waste Water & Their treatment                                                                                                  | ļ     |           |
|      |       | Unit -2                                                                                                                                   |       |           |
|      | 2.1   | Disposal of Wastes                                                                                                                        |       |           |
|      | 2.2   | Reduction of Waste Volume and Strength                                                                                                    |       |           |
| 2    | 2.3   | Chemical, Biological and Physical treatment of Industrial<br>Wastes                                                                       | 15    | 50%       |
|      | 2.4   | Important regulation for Industrial Wastes in India: Recycle<br>Plastic Act-1999, Batties Act2001, Ozone Depleting Substance<br>Rule-2000 |       |           |

#### **Suggested readings:**

- 1. Bharucha, E. (2004). Text Book for Environmental Studies. University Grant Commission.
- 2. Saravanan, K. (2005). Principles of Environmental Science and Technology. New AgeInternational (P) Limited, Publishers
- 3. Ray, S and Ray, A.K. Biodiversity and Biotechnology. *New Central Book Agency* (*P)Ltd.*
- 4. Sharma, P.D. (2018). Text Book of Ecology and Environment. Rastogi Publications.
- 5. Sharma, J.P. (2017). Text Book of Environmental Studies. University Science Press.



# Faculty of Science Gokul Science College



University Campus, State Highway-41,



# Subject Code: MES206SE Subject Name: Industrial wastes their management

# Semester: II Faculty Name/s: Pranav Patel

## Course Outcomes: At the end of the course, students shall be able to

| CO1 | Minimize the Production of Waste. Proper management practices help minimize the garbage and scraps that need handling |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| CO2 | Reduce Pollution Effects. Secondly, it's vital to lower the impact garbage has on pollution.                          |
| CO3 | Students can utilize their belongings like paper, pencils and pens to the maximum and produce less amounts of wastes  |
| CO4 | Uncontrolled disposal of industrial waste leads to environmental pollution and irreparable damage                     |
| CO5 |                                                                                                                       |

# **CO - PO Competency and Program Indicators (PI)**

| Course   | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |
|----------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2                | 2   | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO2      | 2                | 1   | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO3      | 2                | 2   | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |
| CO4      | 2                | 1   | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |                  |     |     |     |     |     |     |     |     |      |      |      |

# **CO-PO & CO-PSO Mapping**

| Course   | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |                  |     |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO2      |                  |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |                  |     |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO4      |                  |     |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO5      |                  |     |     |     |     |     |     |     |     |      |      |      |      |      |





University Campus, State Highway-41, Siddhpur - 384151, Dist. Patan, Gujarat, INDIA, Mobile : 9510973863

E- Mail: dean.fac.sci@gokuluniversity.ac.in, Website: www.gokuluniversity.ac.in



| GOKUL GLOBAL UNIVERSITY, SIDHPUR |                                     |           |                         |                           |  |  |  |  |  |  |  |  |
|----------------------------------|-------------------------------------|-----------|-------------------------|---------------------------|--|--|--|--|--|--|--|--|
| Progra                           | amme Code                           | MES       | Programme Name          | M.Sc.EnvironmentalScience |  |  |  |  |  |  |  |  |
| <b>Course Code</b>               |                                     | MES201PRA | Semester                | II                        |  |  |  |  |  |  |  |  |
|                                  | Environmental monitoring techniques |           |                         |                           |  |  |  |  |  |  |  |  |
| C                                | ourse type :                        | Practical | Total Credit :          | 03                        |  |  |  |  |  |  |  |  |
| Teaching time<br>(hours)         |                                     |           | Examination Marking sch | eme                       |  |  |  |  |  |  |  |  |
| Theory                           | Practical                           | Internal  | External                | Total                     |  |  |  |  |  |  |  |  |
| (hrs)                            | (hrs)                               | (Marks)   | (Marks)                 | (Marks)                   |  |  |  |  |  |  |  |  |
|                                  |                                     |           | 75                      | 75                        |  |  |  |  |  |  |  |  |

# LIST OF EXPERIMENTS

#### 1. Methods for air sampling

- 1.1To study the devices and methods for air samples
- ii. Determination of SO2 from air samples
- iii. Determination of NO2 from air samples
- 2. Environmental Sample analysis: Soil
  - 2.1 i. Physical properties of soil:

(A) Colour, (B) Texture, (C) Water holding capacity (D) Porosity and bulk density, (E) Moisture, (F) pH and Temperature ii. Chemical properties of soil: (A) Chloride, (B) Soil minerals, (C) Chemical oxygen demand (E) Inorganic phosphorus, (F) Sulphate, (G) Nitrogen iii.Biological

2.2 properties of soil:

(A) Soil microorganism analysis, (B) Soil Macrofauna

3. GIS: i. Introduction to Software Arc- view GIS 3.2

(A) Scanning of map (B) To view the scanned Map in Arc-view GIS 3.2 (C) Digitization of polygone layer (D) Digitization of line layer (E) Digitization of point layer (F) Map reading: Land use, Urban areas, Water resources, Forest & Ocean

**References:** 

- Stem A.C.,(1977), Air pollution, Academic Press, New York
- S.K. Maiti.(2001). Handbook of methods in Environmental Studies vol 1. Water & waste Analysis, ABD Pub.



# Faculty of Science Gokul Science College University Campus, State Highway-41,




- Guidelines from GPCB-CPCB
- Paliwal U.L (2002) Environment Audit, Indus Valley Publication, Jaipur



Faculty of Science Gokul Science College





|                | GOKUL GLOBAL UNIVERSITY, SIDHPUR |           |                           |                                |  |  |  |  |  |
|----------------|----------------------------------|-----------|---------------------------|--------------------------------|--|--|--|--|--|
| Programme Code |                                  | MES       | Programme Name            | M.Sc. Environmental<br>Science |  |  |  |  |  |
| C              | ourse Code                       | MES202PRA | Semester                  | Π                              |  |  |  |  |  |
|                | Solid waste management           |           |                           |                                |  |  |  |  |  |
| С              | ourse type :                     | Practical | Total Credit :            | 03                             |  |  |  |  |  |
|                | ng time<br>urs)                  |           | Examination Marking scher | ne                             |  |  |  |  |  |
| Theory         | Practical                        | Internal  | External                  | Total                          |  |  |  |  |  |
| (hrs) (hrs)    |                                  | (Marks)   | (Marks)                   | (Marks)                        |  |  |  |  |  |
|                |                                  |           | 75                        | 75                             |  |  |  |  |  |

# LIST OF EXPERIMENTS

- Sampling methods of soil and solid waste
- Solid waste characteristics
- Analysis of moisture content
- Analysis of organic content
- Analysis of organic matter
- Analysis of Sodium and Potassium
- Analysis of Nitrogen content
- Analysis of Phosphorus
- Preparation of compost
- Biological analysis of municipal solid waste

#### **Reference books:**

• Guidelines from GPCB-CPCB Paliwal U.L (2002) Environment Audit, Indus Valley Publication, Jaipur



## Faculty of Science Gokul Science College





Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018) Subject / Branch: Environmental Science

**Program:** Master of Science

Year : 2022/23

#### Semester: 3

| Course title : | Environmental Health and                          | Course code   | : | MES301DSC |
|----------------|---------------------------------------------------|---------------|---|-----------|
| Course type :  | Disaster Management<br>Discipline Specific Course | Course credit | : | 04        |

| Теас    | hing (Hours/ | week)     |       | Examinatio | n Scheme |       |
|---------|--------------|-----------|-------|------------|----------|-------|
| Lecture | Tutorial     | Practical | Inter | nal        | External | Total |
| 4       | 0            | 0         | Mid   | CE         | External | TOLAI |
| 4       | 0            | 0         | 20    | 10         | 70       | 100   |

#### Content

| Unit | Description in detail                                                                                                                                                                                                                                                                                       | Credit | Weightage |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1    | Environmental Health<br>Basic principles of environmental health<br>Physiological responses of man to relevant stresses in<br>environment<br>Epidemic and Pandemic disease in environment<br>Global and national agencies working for environmental<br>health                                               | 1      | 25 %      |
| II   | Occupational health and hazardsTypes of occupational hazards and their health effects.Classification of occupational diseases based on agents andoriginsIndustrial accidents-causal factors and preventionmeasures, (OSHAS)Measures for protection of health of workers; prevention ofoccupational diseases | 1      | 25 %      |
| III  | Disaster management –I<br>Disaster: Definition and classification<br>Risk assessment and vulnerability analysis<br>Disaster preparedness<br>Disaster response at national, state and local level                                                                                                            | 1      | 25 %      |
| IV   | Disaster management –II<br>Disaster medicines<br>Rehabilitation, reconstruction and recovery<br>Participatory management<br>Disaster management act (2005)                                                                                                                                                  | 1      | 25 %      |



## Faculty of Science Gokul Science College



University Campus, State Highway-41,



(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

## **Reference Books:**

Environmental Engineering - Devis Cornwell 3rd edition (1998). Mc Graw Hill.

Environmental Engineering - Gerald Kiely (1998) Mc graw Hill

Environmental Engineering - A global Prospective (2000) edt by Gary Vanloon& Duffy. Oxford Pub.

Encyclopedia of Environmental pollution and Control - R.K.Trivedi

An Introduction to air Pollution - R.K.Trivedi and P.K.God (1998) Technology Pub.

Environmental Pollution control Engineering - C.S.Rao (1995)- Wiley Eastern ltd.

Nature and properties of Soil- N.C.Brady (1997) Mc. Millan pub.







(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018) Semester: III

## Subject Code: MES301DSC Subject Name: Environmental health &Disaster management

**Faculty Name/s: Pranav Patel** 

### Course Outcomes: At the end of the course, students shall be able to

| CO1 | Develop a deep understanding of disaster resilience, risk mitigation, and recovery policies as they arise from natural hazards around the globe                                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | If the students are properly trained, they can rush to the disaster spot and can help the disaster management team for quick rehabilitation and resettlement of victims at times of floods, earthquakes and drought etc.                                                     |
| CO3 | Disaster education aims to provide knowledge among individuals and groups to take actions to reduce their vulnerability to disasters.                                                                                                                                        |
| CO4 | After studying this course, you should be able to: understand what is meant by management<br>and managerial effectiveness. identify the roles which are fulfilled while working as a<br>manager. identify managerial activities that contribute to managerial effectiveness. |
| CO5 |                                                                                                                                                                                                                                                                              |

## **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |  |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |
| CO1      | 2   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |  |
| CO2      | 2   | 1                | 1   | -   | -   | -   | -   | 2   | 1   | -    |      |      |  |
| CO3      | 3   | 2                | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |  |
| CO4      | 3   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |  |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |  |

## **CO-PO & CO-PSO Mapping**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO2      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |     |                  |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO4      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |      |      |





University Campus, State Highway-41,



| Program  | : Master o | of Science                                        | Subject / Branch: Environmental Science |   |           |  |  |  |
|----------|------------|---------------------------------------------------|-----------------------------------------|---|-----------|--|--|--|
| Year     | : 2022/23  |                                                   | Semester: 3                             |   |           |  |  |  |
| Course t | itle :     | Environmental Monitoring and<br>Management System | Course code                             | : | MES302DSC |  |  |  |
| Course t | ype :      | Discipline Specific Course                        | Course credit                           | : | 04        |  |  |  |

| Teac    | hing (Hours/ | week)     | Examination Scheme |     |          |       |  |  |
|---------|--------------|-----------|--------------------|-----|----------|-------|--|--|
| Lecture | Tutorial     | Practical | Inter              | mal | Extornal | Total |  |  |
| 4       | 0            | 0         | Mid                | CE  | External | Total |  |  |
| 4       | 0            | 0         | 20                 | 10  | 70       | 100   |  |  |

#### Content

| Unit | Description in detail                                                                                                                                                                                                                                                                                                                                                                                                                     | Credit | Weightage |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1    | Sampling and Environmental Models<br>Sampling methodologies for environmental matrices,<br>Sampling protocols- selection of sites, time and frequency<br>for sampling, preservation, storage and handling of<br>samples;<br>Setting up an environment monitoring lab and Good<br>Laboratory Practices<br>Study of different environment quality models                                                                                    | 1      | 25 %      |
| II   | <ul> <li>Air Pollution and Control</li> <li>Measurement of air pollutants, Air quality standards,</li> <li>Air quality monitoring studies: wind roses, air sampling,</li> <li>analysis</li> <li>NOX, SOX, CO, O3 and particulate matter, Stack</li> <li>monitoring NAAQS, Air quality surveillance network,</li> <li>control approaches (stationary and mobile)</li> <li>Indoor air quality management and Air quality indices</li> </ul> | 1      | 25 %      |
|      | Water Pollution and Control<br>Measuring water pollutants and its monitoring methods<br>Industrial and domestic water quality assessment<br>Water quality standards, CPCB, BIS, ISO, USEPA, WHO,<br>Water quality assurance, Water Quality Modeling                                                                                                                                                                                       | 1      | 25 %      |
| IV   | Monitoring and Green Building<br>Measuring and monitoring soil quality                                                                                                                                                                                                                                                                                                                                                                    | 1      | 25 %      |



## Faculty of Science Gokul Science College



University Campus, State Highway-41,



|                                                              | niver |
|--------------------------------------------------------------|-------|
| Physico-chemical and micro and macro-fauna sampling          |       |
| Impact assessment of industry, pesticide, fertilizer on soil |       |
| quality Concept of bio-pesticide, bio-fertilizer and organic |       |
| farming                                                      |       |
| Concept of Green infrastructure, Green buildings, green      |       |
| industries, green belt etc                                   |       |

#### **Reference Books:**

Environmental Engineering - Devis Cornwell 3rd edition (1998). Mc Graw Hill.

Environmental Engineering - Gerald Kiely (1998) Mc graw Hill

Environmental Engineering - A global Prospective (2000) edt by Gary Vanloon& Duffy. Oxford Pub.

Encyclopedia of Environmental pollution and Control - R.K.Trivedi

An Introduction to air Pollution - R.K.Trivedi and P.K.God (1998) Technology Pub.







Subject Code: MES302DSC Subject Name: Environmental monitoring & management  Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

## Semester: III Faculty Name/s: Pranav Patel

### Course Outcomes: At the end of the course, students shall be able to

| CO1 | Environmental monitoring is a tool to assess environmental conditions and trends, support policy development and its implementation, and develop information for reporting to national policymakers, international forums and the public. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | The main objective of environmental monitoring is to manage and minimize the impact an organization's activities have on an environment                                                                                                   |
| CO3 | Ither to ensure compliance with laws and regulations or to mitigate risks of harmful effects on the natural environment and protect the health of human beings.                                                                           |
| CO4 | The Environment Management Plan (EMP) identifies feasible and cost-effective measures that have the potential to reduce potentially significant negative environmental impacts to acceptable levels.                                      |
| CO5 |                                                                                                                                                                                                                                           |

## **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 3   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO2      | 2   | 1                | 2   | -   | -   | -   | -   | 2   | 1   | -    |      |      |
| CO3      | 3   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO4      | 3   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |

## **CO-PO & CO-PSO Mapping**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |                  |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO2      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |     |                  |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO4      |     |                  |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |      |      |



## Faculty of Science Gokul Science College



University Campus, State Highway-41,



| Program  | : Master of | of Science                                                      | Subject / Bran | <b>ch:</b> En | vironmental Science |
|----------|-------------|-----------------------------------------------------------------|----------------|---------------|---------------------|
| Year     | : 2022/23   | }                                                               | Semester: 3    |               |                     |
| Course t | title :     | Ecological Assessment<br>Techniques , Remote Sensing<br>and GIS | Course code    | :             | MES303DSC           |
| Course   | ype :       | Discipline Specific Course                                      | Course credit  | :             | 04                  |

| Teac    | hing (Hours/ | week)     | Examination Scheme |     |          |       |  |  |  |
|---------|--------------|-----------|--------------------|-----|----------|-------|--|--|--|
| Lecture | Tutorial     | Practical | Inter              | mal | External | Tatal |  |  |  |
| 4       | 0            | 0         | Mid                | CE  | External | Total |  |  |  |
| 4       | 4 0          |           | 20                 | 10  | 70       | 100   |  |  |  |

#### Content

| Unit | Description in detail                                                                                                                                                                                                                                                                        | Credit | Weightage |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| I    | <b>Techniques for biodiversity assessment</b><br>Quantitative assessment of biodiversity: different types of<br>transects, quadrates and data analysis.<br>Population census techniques for vertebrates.<br>Invertebrate sampling techniques<br>Phylogenetic analysis of DNA sequences.      | 1      | 25 %      |
| II   | <b>Remote Sensing and Applications</b><br>Introduction to remote sensing, History and scope<br>Energy sources and EMR, RS sensors and platforms<br>Image processing and classification<br>Land cover and Land use analysis, Analysis of spatial<br>data. RS applications in different fields | 1      | 25 %      |
|      | GIS Basics<br>Fundamentals of GIS and functions of GIS<br>Software for GIS (GIS lab)<br>Spatial data models<br>Presentation of GIS data                                                                                                                                                      | 1      | 25 %      |
| IV   | GIS Application<br>Ecological modeling through GIS<br>Species distribution models<br>Fragmentation analysis<br>Applications of GIS                                                                                                                                                           | 1      | 25 %      |



## Faculty of Science Gokul Science College



University Campus, State Highway-41,



### **Reference Books:**

Environmental Engineering - Devis Cornwell 3rd edition (1998). Mc Graw Hill.

Environmental Engineering - Gerald Kiely (1998) Mc graw Hill

Environmental Engineering - A global Prospective (2000) edt by Gary Vanloon& Duffy. Oxford Pub.

Encyclopedia of Environmental pollution and Control - R.K.Trivedi

An Introduction to air Pollution - R.K.Trivedi and P.K.God (1998) Technology Pub.

Environmental Pollution control Engineering - C.S.Rao (1995)- Wiley Eastern ltd.

Nature and properties of Soil- N.C.Brady (1997) Mc. Millan pub.

Environmental Chemistry - A.K.De(1995), Widy Eastern.







Subject Code: MES303DSC Subject Name: Ecological assessment techniques RS & GIS  Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

Semester: III Faculty Name/s: Pranav Patel

#### Course Outcomes: At the end of the course, students shall be able to

| CO1 | GIS makes it easy to monitor the environment using satellite images. Satellite images help monitor the natural resources, soil, and habitat of different species.                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | With the help of GIS, an organization can observe the distribution of different species and use this information to allocate funds for the species.                                                                                                                                                                          |
| CO3 | Explain and communicate quantitative remote-sensing principles and integrate different tools for remote sensing data analysis.                                                                                                                                                                                               |
| CO4 | Recent advances in remote sensing technology have enabled researchers to gain a more comprehensive understanding of the environment. Through satellite imagery, researchers can observe changes in land cover, vegetation and water levels, track the spread and intensity of wildfires, and assess the movement of species. |
| CO5 |                                                                                                                                                                                                                                                                                                                              |

### **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO2      | 2   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO3      | 3   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO4      | 2   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |

## **CO-PO & CO-PSO Mapping**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO2      |     |                  |     |     |     |     |     |     |     |      |      |      | 2    | -    |
| CO3      |     |                  |     |     |     |     |     |     |     |      |      |      | 3    | -    |
| CO4      |     |                  |     |     |     |     |     |     |     |      |      |      | 1    | -    |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |      |      |



## Faculty of Science Gokul Science College



University Campus, State Highway-41,



Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018) Subject / Branch: Environmental Science

**Program:** Master of Science

**Year** : 2022/23

#### Semester: 3

| Course title : | Environmental Law, Impact                          | Course code   | : | MES304DSC |
|----------------|----------------------------------------------------|---------------|---|-----------|
| Course type :  | assessment and Audit<br>Discipline Specific Course | Course credit | : | 04        |

| Tea     | ching (Hours/ | week)     | Examination Scheme |     |          |       |  |  |  |
|---------|---------------|-----------|--------------------|-----|----------|-------|--|--|--|
| Lecture | Tutorial      | Practical | Inter              | nal | External | Total |  |  |  |
| 4       | 1 0           |           | Mid                | CE  | External | TOLAI |  |  |  |
| 4       | 0             | 0         | 20                 | 10  | 70       | 100   |  |  |  |

#### Content

| Unit | Description in detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credit | Weightage |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| Ι    | Environmental Laws and Policies<br>Introduction to Indian constitution and environment<br>protection,<br>National Environmental Policy, constitutional provisions<br>(Article 48A, 51A).<br>Acts, rules regulations and amendments thereof -Air<br>(Prevention and Control of Pollution) Amendment Act,<br>1987, Water (Prevention and Control of Pollution)<br>Amendment Act, 2012,<br>Wildlife (Protection) Amendment Act (1972), Forest<br>(Conservation) Second Amendment Rules, 2014, |        | 25 %      |
| II   | Environmental Laws and Case studies<br>Environment Laws (Amendment) Act, 2015, Factories Act<br>(1948) and Rules<br>Hazardous and Other Wastes (Management and<br>Transboundary Movement) Rules, 2015, Bio-Medical<br>Waste Management Rules, 2016, National Green Tribunal<br>Act 2010<br>MSIHC Rules, Noise Pollution Act, 1998<br>Important Case studies of Environmental Law                                                                                                           | 1      | 25 %      |
|      | <b>Environmental impact assessment</b><br>Objectives and development of EIA.<br>EIA notifications, benefits of EIA, Prior Environmental<br>Clearance, application for EC.<br>EIA methodology, advance tools and GIS in EIA process                                                                                                                                                                                                                                                         | 1      | 25 %      |



## Faculty of Science Gokul Science College



University Campus, State Highway-41,



|    | (Gujarat Private State U                              | Inversity Act 4 01 | 2010) |
|----|-------------------------------------------------------|--------------------|-------|
|    | Environmental Impact Statement (EIS), project types,  |                    |       |
|    | important considerations in EIA                       |                    |       |
| IV | Environmental auditing                                |                    |       |
|    | Introduction and significance of environmental audit, |                    |       |
|    | Audit regulations, standards and protocols            |                    |       |
|    | Green Balance Sheet (GBS), Social impact assessment   | 1                  | 25 %  |
|    | (SIA), Strategic Environmental Assessment (SEA), post |                    |       |
|    | project analysis.                                     |                    |       |
|    | Environmental appraisal.                              |                    |       |

#### **Reference Books:**

Environmental Engineering - Devis Cornwell 3rd edition (1998). Mc Graw Hill.

Environmental Engineering - Gerald Kiely (1998) Mc graw Hill

Environmental Engineering - A global Prospective (2000) edt by Gary Vanloon& Duffy. Oxford Pub.

Encyclopedia of Environmental pollution and Control - R.K.Trivedi

An Introduction to air Pollution - R.K.Trivedi and P.K.God (1998) Technology Pub.

Environmental Pollution control Engineering - C.S.Rao (1995)- Wiley Eastern ltd.

Nature and properties of Soil- N.C.Brady (1997) Mc. Millan pub.

Environmental Chemistry - A.K.De(1995), Widy Eastern.







Subject Code: MES304DSC Subject Name: Environmental Law impact assessment & audit  Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

## Semester: III Faculty Name/s: Pranav Patel

#### **Course Outcomes:** At the end of the course, students shall be able to

| CO1 | The Outcomes of environmental impact assessment help to identify potential environmental impacts of the proposed project or development.                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | EIAs make sure that project decision makers think about the likely effects on the environment at the earliest possible time and aim to avoid, reduce or offset those effects |
| CO3 | Impact assessments help us understand the possible impacts of these types of projects before they start.                                                                     |
| CO4 | Assessments identify the best ways to avoid or reduce a project's negative impacts. They may also find ways to enhance the positive aspects of a project.                    |
| CO5 |                                                                                                                                                                              |

### **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 2   | 2                | 2   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO2      | 1   | 1                | 1   | -   | -   | -   | -   | 2   | 1   | -    |      |      |
| CO3      | 2   | 2                | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |
| CO4      | 2   | 1                | 1   | -   | -   | -   | -   | 1   | 1   | -    |      |      |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |

#### **CO-PO & CO-PSO Mapping**

| Course   |     |     |     |     |     | Ι   | Program | m Out | comes |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|---------|-------|-------|------|------|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8   | PO9   | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO2      |     |     |     |     |     |     |         |       |       |      |      |      | 2    | -    |
| CO3      |     |     |     |     |     |     |         |       |       |      |      |      | 3    | -    |
| CO4      |     |     |     |     |     |     |         |       |       |      |      |      | 1    | -    |
| CO5      |     |     |     |     |     |     |         |       |       |      |      |      |      |      |





University Campus, State Highway-41,



Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018) Subject / Branch: Environmental Science

**Program:** Master of Science

**Year** : 2022/23

#### Semester: 3

| Course title : | Wildlife and Conservation | Course code   | : | MES301SE |
|----------------|---------------------------|---------------|---|----------|
| Course type :  | Biology - 3<br>Elective   | Course credit | : | 02       |

| Teac    | hing (Hours/ | week)     | Examination Scheme |     |          |       |  |  |
|---------|--------------|-----------|--------------------|-----|----------|-------|--|--|
| Lecture | Tutorial     | Practical | Inter              | nal | External | Total |  |  |
| 2       | 0            | 0         | Mid                | CE  | External | TOLAI |  |  |
| 2       | 0            | 0         | 15                 | 00  | 35       | 50    |  |  |

#### Content

| Unit | Description in detail                                         | Credit | Weightage |
|------|---------------------------------------------------------------|--------|-----------|
| I    | Wildlife Research and Monitoring                              |        |           |
|      | Conventional Research & Monitoring techniques                 |        |           |
|      | Advanced research & Monitoring techniques                     | 1      | 50 %      |
|      | Camera trapping                                               |        |           |
|      | Radio telemetry                                               |        |           |
| П    | Advances in wildlife Research                                 |        |           |
|      | Noninvasive conservation genetics                             |        |           |
|      | Wildlife research case studies                                | 1      | 50 %      |
|      | Use of information technology in wildlife research (in silico |        | 50 %      |
|      | wildlife research)                                            |        |           |
|      | Citizen science approach                                      |        |           |

#### **Reference Books:**

Nelson N. (2009): Liquids waste of industries theories, practicals and treatment butter worth-Heinemann.

Industrial waste water treatment- Graman. F

Metcalf and Eddy, revised by Tchobanoglous G. and Burtonfl (2003), Waste Water Engineering, Treatment. Disposal and reuse. McGraw-Hill, inc. Newyork city.







Subject Code: MES301SE Subject Name: Wildlife and Conservation Biology  Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

### Semester: III Faculty Name/s: Pranav Patel

### **Course Outcomes:** At the end of the course, students shall be able to

| CO1 | Students will realize that people are dependent on intact habitats that sustain the various organisms we need to produce food, medicines, clothing, and other materials. |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Students will learn about certain species' roles in an ecosystem.                                                                                                        |
| CO3 | Students will discover that life can be found almost everywhere on earth.                                                                                                |
| CO4 | Students will be able to identify species, characteristics, habitat requirements and life cycles of birds, fish and/or mammalian wildlife species.                       |
| CO5 |                                                                                                                                                                          |

### **CO - PO Competency and Program Indicators (PI)**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1      | 3   | 1                | 1   | -   | -   | -   | -   | 2   | 2   | -    |      |      |
| CO2      | 1   | 2                | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |
| CO3      | 2   | 3                | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |
| CO4      | 2   | 2                | 1   | -   | -   | -   | -   | 2   | 1   | -    |      |      |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |

## **CO-PO & CO-PSO Mapping**

| Course   |     |     |     |     |     | I   | Program | m Out | comes |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|---------|-------|-------|------|------|------|------|------|
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8   | PO9   | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |     |     |     |     |     |         |       |       |      |      |      | -    | 2    |
| CO2      |     |     |     |     |     |     |         |       |       |      |      |      | -    | 2    |
| CO3      |     |     |     |     |     |     |         |       |       |      |      |      | -    | 1    |
| CO4      |     |     |     |     |     |     |         |       |       |      |      |      | -    | 2    |
| CO5      |     |     |     |     |     |     |         |       |       |      |      |      |      |      |





University Campus, State Highway-41,



Subject / Branch: Environmental Science

**Program:** Master of Science

: 2022/23

Year

Semester: 4

| Course title : | Eco- tourism and Conservation<br>(ETC) | Course code   | : | MES401SC |
|----------------|----------------------------------------|---------------|---|----------|
| Course type :  | Elective                               | Course credit | : | 02       |

| Teac    | hing (Hours/ | week)     | Examination Scheme |     |          |       |  |  |
|---------|--------------|-----------|--------------------|-----|----------|-------|--|--|
| Lecture | Tutorial     | Practical | Inter              | nal | External | Total |  |  |
| 2       | 0            | 0         | Mid                | CE  | External | TOLAI |  |  |
| 2       | 0            | 0         | 15                 | 00  | 35       | 50    |  |  |

#### Content

| Unit | Description in detail                  | Credit | Weightage |
|------|----------------------------------------|--------|-----------|
| I    | Eco – Tourism                          |        |           |
|      | Introduction of tourism as an industry |        |           |
|      | Concept of Eco Tourism                 | 1      | 50 %      |
|      | Regulation of Eco tourism              |        |           |
|      | Impact of Ecotourism on the ecosystem  |        |           |
| II   | Role of ecotourism in conservation     |        |           |
|      | Ecotourism and local community         | 1      | 50 %      |
|      | Impact of ecotourism spots in india    |        | 50 %      |
|      | Tourism vs eco-tourism                 |        |           |

#### **Reference Books:**

Bharucha, E. (2004). Text Book for Environmental Studies. University Grant Commission

Saravanan, K. (2005). Principles of Environmental Science and Technology. New AgeInternational (P) Limited, Publishers







(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018) Semester: IV

## Faculty Name/s: Pranav Patel

## Subject Code: MES401SE Subject Name: Eco-tourism and conservation

## **Course Outcomes:** At the end of the course, students shall be able to

| CO1 | Ecotourism is to minimize the impact brought about by tourism on the environment                                                                                                                                                                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | The idea is to focus on uniting conservation, communities and sustainable development through the means of trave                                                                                                                                                  |
| CO3 | To make the tourist industry more competitive and draw in private sector investment.<br>To preserve and enhance the nation's natural and cultural resources. To ensure the<br>nation's tourist industry develops in a sustainable, ethical, and inclusive manner. |
| CO4 | Through ecotourism, people can learn about the importance of conservation and find ways to help protect the environment. It builds relationships between people and nature.                                                                                       |
| CO5 |                                                                                                                                                                                                                                                                   |

## **CO - PO Competency and Program Indicators (PI)**

| Course   | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |  |
|----------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
| Outcomes | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |
| CO1      | 2                | 1   | 1   | -   | -   | -   | -   | 2   | 2   | -    |      |      |  |
| CO2      | 1                | 2   | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |  |
| CO3      | 2                | 3   | 2   | -   | -   | -   | -   | 1   | 2   | -    |      |      |  |
| CO4      | 1                | 2   | 1   | -   | -   | -   | -   | 2   | 1   | -    |      |      |  |
| CO5      |                  |     |     |     |     |     |     |     |     |      |      |      |  |

## **CO-PO & CO-PSO Mapping**

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      |     |                  |     |     |     |     |     |     |     |      |      |      | -    | 2    |
| CO2      |     |                  |     |     |     |     |     |     |     |      |      |      | -    | 2    |
| CO3      |     |                  |     |     |     |     |     |     |     |      |      |      | -    | 1    |
| CO4      |     |                  |     |     |     |     |     |     |     |      |      |      | -    | 2    |
| CO5      |     |                  |     |     |     |     |     |     |     |      |      |      |      |      |



## Faculty of Science Gokul Science College



University Campus, State Highway-41,