

<u>SECTION – A</u>

(Common for all candidates)

Total Marks: 50

Ph.D. Entrance Examination Syllabus (Research Methodology)

Unit	Content
1	Basics of Research: Research: Meaning, Objective, Characteristics, Steps of research, Methods of research, Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical.
2	Research Problem and Research Design: Introduction to Research Problem, Necessity of Defining the Problem, Selecting the Problem, Techniques Involved in Defining a Problem, Meaning and Types of Research Design, Important Concepts Relating to Research Design
3	Sampling Design: Census and sample survey, Implications of a Sample Design, Steps in sampling Design, Criteria of Selecting a Sampling Procedure, Characteristics of a Good Sample Design, Different Types of sample Designs, How to Select a Random Sample?, Random Sample from an Infinite Universe, Complex Random Sampling Designs
4	Data Collection and Analysis: Methods of Data Collection- Observation, Interview, Questionnaires, Schedules, Survey and Experimental. Selection of Appropriate Method for Data Collection, Different Techniques of Sampling such as Probability and Non-Probability, Basic Statistical Methods of Data Analysis such as Frequency distribution, Measures of central tendency, Measures of Dispersion, Coefficient of variation, correlation and regression.
5	Research Ethics and Morals: Environmental impacts and Ethical issues, Commercialisation, Copy right, Royalty, Intellectual property rights and Patent law, Plagiarism, Citation, Referencing style and acknowledgement.

<u>SECTION – B</u>

Total Marks: 50 Ph.D. Entrance Examination Syllabus (Computer)

ENGINEERING MATHEMATICS

Mathematical Logic:

Propositional Logic; First Order Logic.

Probability: Conditional Probability; Mean, Median, Mode and Standard Deviation; Random Variables; Distributions; uniform, normal, exponential, Poisson, Binomial.

Set Theory & Algebra: Sets; Relations; Functions; Groups; Partial Orders; Lattice; Boolean Algebra.

Combinatorics:

Permutations; Combinations; Counting; Summation; generating functions; recurrence relations; asymptotics.

Graph Theory:

Connectivity; spanning trees; Cut vertices & edges; covering; matching; independent sets; Colouring; Planarity; Isomorphism.

Linear Algebra:

Algebra of matrices, determinants, systems of linear equations, Eigen values and Eigen vectors.

Numerical Methods:

LU decomposition for systems of linear equations: numerical solutions of non-linear algebraic equations by Secant, Bisection and Newton-Raphson Methods; Numerical integration by trapezoidal and Simpson's rules.

Calculus:

Limit, Continuity & differentiability, Mean value Theorems, Theorems of integral calculus, evaluation of definite & improper integrals, Partial derivatives, Total derivatives, maxima & minima.

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

Digital Logic:

Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number representation and computer arithmetic (fixed and floating point).

Computer Organization and Architecture:

Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface, I/O interface (Interrupt and DMA mode), Instruction pipelining, Cache and main memory, Secondary storage.

Programming and Data Structures:

Programming in C; Functions, Recursion, Parameter passing, Scope, Binding; Abstract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps.

Algorithms:

Analysis, Asymptotic notation, Notions of space and time complexity, Worst and average Case analysis; Design: Greedy approach, Dynamic programming, Divide-and-conquer; Tree and graph traversals, connected components, Spanning trees, shortest paths; Hashing, Sorting, Searching. Asymptotic analysis (best, worst, average cases) of time and space, upper and lower bounds, Basic concepts of complexity classes – P, NP, NP-hard, NP-complete.

Theory of Computation:

Regular languages and finite automata, Context free languages and Push-down automata, Recursively enumerable sets and Turing machines, Undesirability.

Compiler Design:

Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimization. **Operating System:**

Processes, Threads, Inter-process communication, Concurrency, Synchronization, Deadlock, CPU scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security.

Databases:

ER-model, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, Indexing, B and B+ trees), Transactions and concurrency control.

Information Systems and Software Engineering: information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project, design, coding, testing, implementation, maintenance.

Computer Networks:

ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp, http); Basic concepts of hubs, switches, gateways, and routers. Network security – basic concepts of public key and private key cryptography, digital signature, firewalls.

Web technologies: HTML, XML, basic concepts of client-server computing.